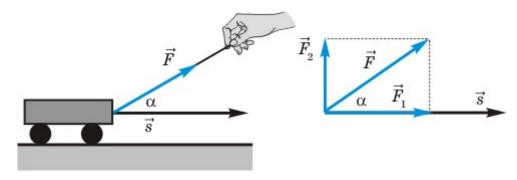
Работа. Мощность. Энергия. КПД

1. Работа

Работа грузчика — перенести ящик весом 100 H на расстояние 10 м.

Как ему выполнить вдвое большую работу?


Два способа:

- 1) взять сразу 2 ящика, приложив в 2 раза большую силу, 200 Н, при неизменном расстоянии 10 м;
- 2) перенести 2 ящика по одному, приложив прежнюю силу, 1000 H, но на в 2 раза большее расстояние, 20 м.

Работа A (Arbeit, нем.) линейно зависит и от силы F, и от перемещения S, таким образом,

$$A = F S$$

Бывает, что сила направлена под углом к перемещению:

тогда действует только та часть силы, которая направлена вдоль перемещения (F₁ на рисунке)

$$F_1 = F \cos \alpha$$

тогда

$$A = F S \cos \alpha$$

размерность: 1 H * 1 M = 1 Дж

2. Энергия

Энергия — способность физической системы совершать работу

2.1 Кинетическая энергия

$$x_1 = a t_1^2/2 + v_0 t_1 + x_0,$$
 $v_1 = a t_1 + v_0;$
 $x_2 = a t_2^2/2 + v_0 t_2 + x_0,$ $v_2 = a t_2 + v_0;$

$$\Delta x = x_2 - x_1 = a(t_2^2 - t_1^2)/2 + v_0(t_2 - t_1) =$$

$$= (a(t_2 + t_1)/2 + v_0)(t_2 - t_1) =$$

$$= (at_2 + at_1 + 2v_0)/2 \Delta t =$$

$$= (v_2 - v_0 + v_1 - v_0 + 2v_0)/2 \Delta t =$$

$$= (v_2 + v_1) \Delta t/2$$

S =
$$\Delta x$$
; F = m a = m ($v_2 - v_1$)/ Δt
A = F S = ($v_2 + v_1$) $\Delta t/2 * m($v_2 - v_1$)/ Δt =
$$= mv_1^2/2 - mv_2^2/2 = E_{K2} - E_{K1}$$$

$$E_K = m v^2 / 2$$

- кинетическая энергия.

Теорема о кинетической энергии:

Изменение кинетической энергии тела при переходе из одного положения в другое равно работе всех сил, действующих на тело

2.2 Потенциальная энергия

Тело, поднятое над землей, при опускании может совершить работу.

Энергия взаимодействия, зависящая от положения тел, называется потенциальной

Работа равна убыли потенциальной энергии:

 $A = -\Delta E_n$

1) П.Э. тела, поднятого над землей

$$A = F S$$
, $F = m g$, $S = h$

$$E_n = m g h$$

2) П.Э. сжатой пружины

Внимание! Действует переменная сила!

$$A = F S / 2$$

$$S = \Delta x, \quad F = -k \Delta x,$$

$$A = -k \Delta x^2 / 2 = -\Delta (k x^2 / 2)$$

$$E_n = k x^2 / 2$$

2.3 Закон сохранения (механической) энергии

Замкнутая система— это система тел, на которую не действуют внешние тела.

Консервативные силы — это силы, работа которых зависит только от начальной и конечной точек и не зависит от траектории движения.

- 0. Есть ли связь между словами «консервативный» и консервами?
- 1. Является ли сила трения консервативной?
- 2. Является ли сила тяжести консервативной? (рассмотреть работу силы тяжести при горизонтальном и вертикальном перемещениях)
- 3. Описать преобразования кинетической и потенциальной энергии при движении маятника.

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной

$$E_{\kappa} + E_{\pi} = E = const$$

Е — полная энергия.

Кинетическая и потенциальная энергия могут переходить друг в друга, но их общая сумма не меняется.

Другими словами, энергия не может быть ни создана, ни уничтожена — только преобразована из одной формы в другую.

Из-за наличия закона сохранения энергии невозможно создать вечный двигатель (1 рода).

3. Мощность

Более мощный механизм выполнит ту же работу *быстрее*

$$P = A / t$$

Размерность: $1 \, \text{Дж} / 1 \, \text{c} = 1 \, \text{Вт}$

4. КПД

В реальном мире неизбежны потери

$$A_3 = A_\Pi + E_{\Pi O T E P S H H O E}$$

$$A_\Pi < A_3$$

$$\eta = A_{\Pi} / A_{3} * 100\%$$